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LETTER TO THE EDITOR 

Closed-form relations for phase-space representatives of 
spin- J operators 

V R Vieira and P D Sacramento 
Centro de Fisica da Ma6M Condensada. AV. Prof. Gama Anto, 2, I699 Lisboa. Portugal 

Received 14 lune 1994 

Abstract By introducing the holomorphie representation we obtain, in closed form, relations 
between the c-number functions, which represent an operator in spin-3 space. without recurring 
to expansions in spherical harmonics In panicular, we obtain the diagonal representative from 
the diagonal mauix element though an integral relation. New analogies between these and the 
spin (Bloeh) coherent Slates are established which avoid the introduction of Schwinger bosons, 
and the consequenl projection to the physical subspace, by inboducing a generalized Fourier 
transformation in spin-3 space in a way similar to the treatment by Cahill and Glauber for boson 
coherent states. Also, we sludy the generalization to the spin case of the s-ordering of Cahill 
and Glauber. 

The spin coherent states [l-31 la) = k(a)lJJ) can be defined in terms of the unitary 
operator 

= euJ-elln1/(1+I~11)13~e-~’3+ 

where a = tan $ei+, and 0 and @ are the spherical angles, yielding 

Two types of c-number representatives for a spin operator 1;. are usually defined. One is 
given by the diagonal matrix element [Z, 11 F ( a * ,  a) = (alkla). The other is the diagonal 
representative f(a, a*). defined by [1-3] 

These representatives are very useful in calculations and their properties and the relations 
between them are important. 

We note first that the coherent state [a), given by equation (I), depends not only on 
the variable a but also on the variable a*, which should be considered independent. As 
for bosons, it is, therefore, convenient to introduce the holomorphic representation [4], 
defininf the new states [[a) = eUJ-1.7.7) which depend only on LY and not a*. Their overlap 
is (B[lll[a) = (1 + S’a)”. h connection with these states, it is convenient to use the 
diagonal representative f(a, a’) defined by 
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and related to f (a, a*) by f(a, a*) = (1 + la12)2('i''f(a,a'), since Ila) = ( I  + laI2)'la). 
Products of operators appear in most calculations and it  is important to know peF 

representatives. The normalized matrix element of the product of two operators 4, = FZFI 
has been obtained previously and, inserting a resolution of the identity, can be written as 

where F(y*. a) = (yll@lla)/(yll![~a). The diagonal representative is obtained similarly, 
removing the end bra and ket states, as 

Taking $2 = ! in equation (4), we are led to the one-variable delta-function [ 11 

However, the same choice in equation (5)  gives us a new one-variable delta-function 

where 6 ' ( y , a )  i s  defined similarly to 6(y. a) (cf equation (3.18) of [l]) 

c(a) = - 2J + / dzv $ ( y ,  a)c(y). 
x (1 + IYI ) 

The delta-function S(y,a) also satisfies equation (8) for c ( y )  of the general form 
P(y)/(l  + IyI2)'. where P(y) is an arbitrary polynomial in y with terms up to y2' 
[ 11 (which is the form of the overlap between an arbitrary state and a spin coherent state). 
On the other hand, the delta-function~S'(y,a) satisfies equation (8) for c ( y ) ,  a diagonal 
representative E(y, a*), as defined by equation (3). This new one-variable delta-function is 
very useful in calculations [5]. 

The two representatives F(cr*, a) and f (a ,  a*) are related through an equation of the 
type 1671 

with kernel [6,3] 

Using the expansions in spherical harmonics for both F(a*,  a) &d f(a, a'), it has been 
possible to invert equation (9) and to express f(u, (U') in terms of F(cu*, (U), finding the 
inverse relation [3,6,71 
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The kernel k- has been given in terms of an expansion in spherical harmonics [6]. We will 
show next that it is possible to obtain this kernel in  closed form, avoiding the expansions 
in spherical harmonics. 

The relation expressing the diagonal representative in terms of the matrix element can 
be most simply obtained by writing f = lfi, using equation (3) for @ on the left-hand 
side and a similar resolution of unity for i on the right-hand side and treating the complex 
variables a and a' as independent. One then arrives at 

- (B Il f llB) 
f ( a ,  a') = - 2J+1 n S d 2 B  [(l+a*/9)(l+B*a)]*('+')' 

In this way we are able to find a closed-form expression for the relation between the diagonal 
representative and the matrix element, without resorting to an expansion in spherical 
harmonics. Note that in the limit J + 00 [3], this equation reproduces the boson result [SI 

The expansion in spherical harmonics for the kernel k- can be obtained using the #-function 
equation (7) [5]. 

We will now generalize, to the spin coherent states, the formalism developed by CahiU 
and Glauber for the boson coherent states. Our starting point is the following theorem: 

/ dg (orlB(g-')M(ylB(g)IS) = (alS)(~lB) (13) 

?here b ( g )  is an irreducible representation of the rotation group for spin J ,  b ( g - l )  = 
D-'(g)  and dg is the invariant measure for the rotation group [9]. This theorem can be 
obtained either by direct evaluation or using Schur's lemma for an irreducible representation 
of the rotation group using the states IJm) as a discrete basis [9]. From this theorem, it 
follows that 

16n2 

fi = - Jdg  Tr(gb(g-'))b(g). (14) 

Defining a new representative of an operator a as f@) = Tr(@b(g-l)), we veri@ that the 
operator @ can be given the following Fourier decomposition: 

This treatment is similar to the one performed for the boson coherent states [lo]. It 
is easy to show that [51 (alib(g)lla) = [D(g; a*,ct)I" and the diagonal representative 
J(g; a, a') = [D(g-'; a*, where D(g; a*, a) is the matrix element for the spin-; 
representation. The mahix element is given by 

(CUlFlru) = - 2 J + 1  16n2 Jdg .?(g)b l~(g) ld .  (16) 

Using the diagonal representative of b ( g ) ,  it follows, from its definition, that f(g) is r 
given by 
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Equations (16) and (17) constitute a pair of Fourier-transformation formulae. 
Similarly to equation (2), we can also expand fi as 

which defines the operator f i ( c y .  a*). One must have (pI&(a. cy*)lp) = 8(cy -.E, a' - p* ) ,  
the two-variable delta-function. 

Another pair of transformation formulae follows if one assumes that the relation between 
representatives of different operators is preserved by the Fourier transformation. One must 
then have 

from which one immediately retrieves equation (15). Using the diagonal representative for 
the operator P. one finds that 

Inserting equation (17) into (16) or (20) into (19), one concludes that the two-variable 
delta-function is given by 

s(g -.,p* - a*) = - 2J+  * /dg (alb(g)lcyY)d(s-l;B,B'). (21) 

This delta-function is also the diagonal representative (at ,9, ,9*) of the projector Iu)(al. 
Similarly, introducing equation (16) into (17) or (19) into (ZO), one concludes that the 
group-space delta-function is given by 8(g', g) = Tr(fi(g-')h(s')). 

In general, the trace of the product of two operators is given by 

16nz 

From equation (22). together with (18). it is easy to see that f(a. cy*) = Tr(p&(a, a*)). 
Using equation (14). we obtain that 

&(a, 01)) = - 23 ' / dg d(g-';  a, a*) &). 16n2 

It is easy to find that the diagonal representative h(a,  a'; 0, p') = kJa, a'; p ,  p') [5 ] .  
The operator &) is a general spin-J irreducible representation of the rotation group. 

lko representations are particularly important. The first can be written in the form 
;(a, @) = k ( ~ ) d + ~  k ' ( a )  showing that this representation is associated with the conjugacy 
classes of the rotation group (or of its covering group). Thesecond representation is 
associated with (right) cosets of the subgroup U( 1) generated by Jz in SU(2) and is defined 
by fi([, x )  = l?(t)dXh. 
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We define the operators &(a, @) =?(a, @)/Z(4) which have unit trace by construction 
and where Z(@) is the trace of ?(a, $). Their eigenvectors are k(a)lJm) with eigenvalue 
g*'"/Z(@). One finds that 

lim ?,(a, -($ - iu)) = Ia)(aI (25) u-k-m 

and therefore, in this limit, this operator yields the matrix element by (alPIa) = 
Tr(&a)(al). We also find that 

iim e-i(*'+l)(+-iu)tN(a, c - iu; t, t*) = h(a, a*; t. t*) (26) 
U'-- 

giving the diagonal representative of the operator A@. a'). Using these two representations, 
we find, by these limiting procedures, the projector Ia)(aI which yields the diagonal 
matrix element of an arbitrary operator and, in the other limiting procedure, the diagonal 
representative of the operator which gives the diagonal representative of an arbitrary 
operator. 

Using the Holstein-Primakoff [ I l l  transformation in the limit J + 00, one has 
j - / f i  -+ af and j+/fi + a. Quantities involving .f, can be treated in two different 
ways: using either j , / J  + 1 or j, - J = -8. Two Lie group structures can then be 
considered: one having a, at and the identity as generators, y d  another having a, at, 
fi = uta and the identity as generators. With the j , / J  + 1 procedure, the variable 
x in the coset representation becomes trivial and we find the representation based on 
the operators &a) as in [IO]. with the j, - J = -A procedure, the conjugacy class 
representation becomes the representation based on the operator f ( a , s )  of [lo]. Defining 
e' = (1 +s)/(l - s), the operator ?(O,s) becomes (1 + e')(-eu)', For u < 0, one has 

which, for @ = f t k ,  is f ( 0 ,  s) and 

which, for @ = fn, is P(0, -s). In this manner, we retrieve the results valid for bosons, 
as obtained by Cahill and Glauber. 

This analysis allows us to define the equivalent of s-ordering for the rotation group or, in 
general, a Lie group. The representative of an operator is defined by the trace of that operator 
with the element b(g) = i (a)&+Li- ' (a)  in the conjugacy class representation. The 
ordering parameter s = tanh $ is defined by the imaginary part of the variable @, associated 
with the operator fA, the generator of the subgroup U(1) of SU(2). The extension of @ to 
complex values takes us outside the group. In the limit U + fw, these operators become 
singular and we find a projector or the operator associated with the diagonal representative. 
The Fourier ms fo rm of the representative of an operator is given by the trace of the 
operator with the element b(g) = kQ)e'X& in the coset representation. The kemel of 
this Fourier transformation is given by the trace of the prcduct of two group elements; one 
written in the conjugacy class representation and the other in the coset representation. For 
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finite J, this amounts to a simple change of variables. The complex extension of &)e'Xi' 
is obtained from k((~)e'(~-'")i k-'(cr) by Fourier transformation using this kernel. 

These representatives dcpend, in general, on 01 and 9 and their Fourier transforms, in 
general, on h and x and not only on 01 or 6 .  The same applies to the integral giving the 
trace of the product of two operators. For finite J ,  it is possible, only in the case U + *ea, 
to find expressions involving only cy or 6 and not 9 or x. The case J + 00, i.e. the 
boson case, is exceptional since, as explained, there are two different ways of handling 
the j ,  operator, giving two different Lie algebra structures and, therefore, two different 
representations. But, since fi = at, is obtained iiom the other generators U and at, the 
variable associated with it is redundant. 
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